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We consider the Laplacian Am in ~j~3 (or in a bounded region of R 3) with 
Dirichlet boundary conditions on the surfaces of some identical (small) 
neighborhoods of m randomly distributed points, in the limit when m goes to 
infinity and their linear size decreases as 1/m. We give here a stronger form of 
the result showing the convergence of the above operator to d - C(x), where 
C(x) is the limit density of electrostatic capacity of the %bstacles." In particular 
results on the rate of convergence and on the fluctuations of An, around the limit 
operator are giveL. 

KEY WORDS: Random walks with traps; random media; potential theory; 
method of images; central limit theorem. 

1. INTRODUCTION,  BASIC DEFINITIONS 
AND RESULTS 

Let us introduce first some notation. We will denote by s an open region 
of R 3 and by ~y(m)_ {Wl ..... Win} ~(s m a set o fm points wi~ s Let B be a 
simply connected open neighborhood of the origin with C 2 boundary 0B. 
B;(_w (m)) will__indicate the set {x ~s ] ( x -  w i ) r n ~  B}, ~c > 0, and D~(_w (''I) 
the set f2\UiB~(_wlmt). 
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A prototype problem in the theory of "effective media" can be roughly 
stated in the following way: which are the asymptotic properties of the 
solution of the Laplace equation (heat equation, wave equation, etc.) on 
D~(w(m)), with Dirichlet boundary conditions on D~Z(_w(m)), in the limit in 
which the number m of the "obstacles'is going to infinity and the points 
are distributed in some smooth way in f27 In particular, does an equation 
exist for the solutions of the limit problem? 

Scattering of light by (many) opaque obstacles, quantum scattering by 
(many) hard core centers, propagation of heat in a composite medium in 
which the sparse component is kept at zero temperature, etc. are examples 
of physical situations for which the above setting can be taken as a model. 

Many authors (Refs. 1-14) using different techniques studied this 
problem during the last decade (with a notable exception, Ref. 1, going 
back to 1948 as quoted in Ref. 6). Even more general assumptions on the 
obstacles than the ones described above have been discussed. From 
Refs. 1 14 we know that in the limit of an infinite number of obstacles the 
effect of the Dirichlet boundary conditions on the obstacles consists in 
replacing A with A - C ( x ) ,  where the nonnegative function C(x) charac- 
terizes the limit density of electrostatic capacity of the excluded set. In the 
presence of a smooth distribution of obstacles, this implies, in particular, 
that the only nontrivial limit is obtained for ~c = 1. We will consider only 
this case and write Bj, D for B), DL (For the rate of convergence to the 
limit of the eigenvalues in the "totally opaque" case, tc < 1, see Ref. 13). 

In particular in a recent paper (12) Ozawa treated the case in which the 
points are independently, randomly distributed using an "image-charge" 
technique. He was able to give a lower bound for the rate of convergence to 
the limit solutions. Exploiting further his method we want to characterize 
the fluctuations around the limit solutions. 

The notation we will use is the following: G~'(x, y), 2 > 0, will denote 
the integral kernel of ( - A  + 2) l where A is the Laplacian with Dirichlet 
boundary condition on ~?f2. We will always assume that 0s is piecewise C 2 
to be guaranteed of the existence of G~(x, y). G ~" will denote the associated 
operator on L2(t-2). 

2 W(m)) Gm(X , y; will denote the integral kernel of ( - A ~ n + 2 )  1, where 
Am is the Laplacian on D(w ('~)) with Dirichlet boundary condition on 
6~O(_w(m)). G~ will indicate the corresponding operator on L2(D(_w(m))). 

G~(_w ('')) will denote the m xm matrix [G~'(w(m))](j=G;'(w,., w/) for 
i=/=j, EG;"(w(m))]ii=O, Vi. 

G~(W(m)), x G O(_w(m)), will denote the vector in ~ "  with components 
[G~]i=GX(x, wi) and G}(_w(m)), feLZ(D(_w(m))), the vector with com- 
ponents [GJ:(_w("))]i= (G~f)(wi). 

[]'[[p and [E.I[~ n) will indicate the norms of functions, respectively, in 
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LP(~ 3) and LP(D(W(m))) (for p = 2  the same symbols will be used for 
operator norm) and II[']l] (m) the norm of vectors and matrices in Nm. Only 
real-valued functions on ~3 will be considered. 

Throughout the paper C will indicate a positive real constant which 
may be different at each step in the proofs. 

The case we are going to study is the one in which the wr are 
independent, identically distributed random vectors in ~2. The distribution 
is assumed to admit a continuous density V(x). 

As in Ref. 12 the techniques we are going to use are essentially non- 
probabilistic. We will characterize a set W (m) of configurations of points by 
some regularity conditions and we will prove our results for each element 
of W (m). It is easy to verify that the {V(x) dx} | measure of W (m) c o n -  

verges to 1 as m goes to infinity. 
More specifically for any positive v < 1/3, we will define W tin) to be the 

set of those points w (m) in ((f~)m, { V(x)dx} | which satisfy the following 
assumptions: 

AI: min Iw i -w) l~Cm l+~ 
i r  

i,j = 1,...,m 

A2: m = 2  

i , j =  1 
i r  

lwi-w/I 3+:~<C~<oc forany 3 > 0  

Independence of the wi's, continuity of V and the law of large numbers 
guarantee (~2~ that the set W (m) on which the assumptions A~ and A2 hold 
has a measure going to 1 as m goes to infinity. 

It should be noticed that the assumption A 1 implies in particular that, 
independently of the initial size of the obstacles, they are not going to have 
intersections among each other for any configurations of points in W (m~, 
for m sufficiently large. We will always consider m large enough to fulfil the 
above request. 

In the following we will give details only for the case s  
the reader can verify at each step that the consideration of a domain 
f2 different from ~3 introduces only minor changes and does not 
affect the proofs. When ~ _ ~ 3 ,  GX(x, y) has the explicit form 
GX(x, y ) =  exp(-x/-2 Ix-yl)(4~c I x -  yl) -1 

We describe now the main features of the method by which the main 
result (Theorem 1 below) of this paper is obtained. First of all we need a 
"good" approximation for G~ which we obtain using an image-charge 
procedure, i.e., we approximate the Dirichlet boundary conditions on the 
obstacles with the "potential" due to point charges outside the integration 
region (in particular in the points wi, i= 1,..., m). This approximation is 
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proved then to become more and more precise in the limit in which the 
linear size of the obstacles goes to zero. 

Specifically our aim is to write for the Green's function Gm(x ,~- y; w (m)) 
an approximate expression of the type: 

2 2 Gm(x , y; w(m))~G~(x, y) + ~ q!~(w (m)) a;(w,, y) =- Hm(x, y; w (m)) 
i = 1  

with suitably chosen values for the charges qi's. 
To fix the values of the qi's we will require that the average value of 

H~m on each OBj(w (m~) be O; apart from terms going rapidly to 0 this 
amounts to a requirement that 

i ;~ " = 0  (1.1) G~(x, wj) + qxG (wi, wj) + 
i = l  
i ~ : j  

where ~ is the electrostatic capacity of B: 

= ~ - ~  (z) dS(z )  

where c~u/O~ denotes the component of the gradient of u along the inner 
normal to 3B at z, dS(z) indicates surface integration and u is the unique 
solution of 

( 3 u ) ( x )  = O, x E ~ 3 \ B  

u(x) = 1, x ~ c~B 

lira u(x) = 0 
Ixl ~ oc 

To clarify the intuitive idea under the choice of the condition (1.1) 
notice that by the above definition elm is the total electrostatic charge 
corresponding to a potential equal to 1 on ~?Bj(w(m)). (q J/elm) is then the 
electrostatic (2 = 0 )  potential corresponding to a total charge qJ on the 
same surface. An easy scaling argument (see Section 3) shows that the fact 
that 2 r 0 tends to become irrelevant in the limit. Analogously GX(w~, wfl is 
the mean value of GX(w~, y) on OBj(_w (m)) only for ,~ = 0, by the mean value 
theorem, but the difference there between G;~(w~, y) and 
e-',A~l~-~JIG~ y) tends rapidly to 0 as m tends to infinity. 

In the notation introduced previously (1.1) becomes 

1 where I is the unitary matrix in Nm and q~ = {q ..... , q~}. 
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To see that the relation (1.2) can be inverted to give qx it is enough to 
show that IflG~jmlll (m/< 1/~ for m sufficiently large. 

From 
(Ixl ,,/2~)~ e-'/~lxl <~ l V/~<I 

we have 
e -'f~rwi-wJ] 2 ,~/2 

Iw,-wjl Iw,-~<A ~-~ 

Taking fl < 1/2 and using the assumption A2 we have for any configuration 
of points in W<m): 

�9 e 2,.~.lw,-wj[-~1/2 C2 ill2 (1.3) 
--~ ( m ) ~ < l { ~  167r2,w_wj12j 

i r j 

For 2 sufficiently large and _w(m)~w (m~ (1.2) is then invertible, 
uniformly in xeD(_w(m)), and yields 

q:'(-w("))-=--~--G2(w(m))[o~G2(w(m))nt-~] - l m  x - _ (1.4) 

Substituting into the definition of H~m we get 

~" _w(m))=G~(x, y ) - ~  G~(w (m)) G~(_w(m)) + ~ G~(w (m)) (1.5) Hm(X, Y; 

In analogy with the previous notation we define for any f ~  L2(~ 3) 

qf(-w(m)) = ___~ i~mG). _ ] - t  mG}(_w (')) (w(m))+'l 

Notice that 

[llm ~/=G)III (m)= (G~f)2(wi) 
i=1 

~< sup [G~f[(x)<~C IIf[I2 
x~ ~3 

(1.6) 

so that ]]]qfllI(m)~Cm -1/2 Ilftl2. In the last inequality of (1.6) we used a 
standard potential estimate (see, e.g., Ref. 15). 

We are now in a position to state the main result of the paper and the 
essential content of the sections leading to its proof. 

In Section 2 we consider the case when B is a sphere of radius ~/4~z (so 
that its electrostatic capacity is just ~) and prove that H ~ -  G~ coriverges 
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in norm to zero faster than m-~/2, as m goes to infinity. This in fact will be 
a simple extension of a result in Ref. 12. 

In Section 3 we prove that H~ converges in norm to ( - A  + ~V+ 2) -~ 
and we characterize the fluctuations around the limit. 

Section 4 is devoted to the discussion of some extensions and 
applications. 

The main result we obtain in the paper is the following: 

T h e o r e m  1. Let B be the sphere of radius ~/4n. With the notation 
introduced above we have the following: 

(a) For  any e > 0, ($ > 0 3too such that 

IIm"EG~.(-w (m}) Z,.(-w (m)) - A x ]II 2 < 6 (1.7) 

for any m > m o ,  any _w {m} belonging to a set of {V(x )  dx}  | 
m e a s u r e > l - e ,  and any r /< l /2 ,  Z>0 .  Here A x = - ( - J + ~ V + Z )  -1, 
Zm(_W (ml) is the characheristic function of D(_w (m}) and (GXZmf)(x)  is 
extended to all gr setting its value equal to zero on ~3\D(_w{m)). 

(b) For  each geL2(~3) ,  the random field on L2(~3), 

Cg~(f; w(m))=_m'/Z(f, EG~(w ('')) Zm(W(m))-- A x] g) (1.S) 

[where ( ' ,  ' )  is the inner product in L 2 (~3)], converges in distribution to 
the Gaussian random field (~( f )  of mean 0 and covariance: 

E( j(S) 
= c~2[(AXfA~g, A;f'AXg)L~ - (A;f,  ASg)L~(A;f  ', A~g)L~] (1.9) 

with (., .)c~ = ( ' ,  V.). 

(c) If in addition the region f2 is such that A - l  is compact (in par- 
ticular, if s is bounded) the following further result holds: Let ?(,,m)(w(m)) be 
the nth eigenvalue of - -A m and y, the nth eigenvalue of - A  + ~V then, if ~, 
is not degenerate and q~ is the corresponding normalized eigenfunction, 
the random variable ~/2 {m) =H{m) m ( 7 , - - 7 , ) - -  ~ tends in distribution to a 
Gaussian random variable H ,  of mean 0 and 

{E(H])} , /2  2 2 2 2 2 1/2 
= ~[(~., ~.)~{~}- (co., ~.)~v{~)] (1.1o) 

2. EFFECTIVENESS OF THE A P P R O X I M A T I O N  
OF THE GREEN'S FUNCTION 

We want to prove the following: 

Theorem 2 (Ozawa(12)). []G~(-w(m)) -H~('~'(m)~ll(m)<Cm..m~L~ , , 2  ~ 

any/7 < 2/3 uniformly in w (m) ~ W (m). 
for 
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Proof. Take f (y )  ~ C~(D(~_I](m)). Um(y ) ==- [ ( H ~  - -  G~)f] (y)  is a 
solution of ( - -A+2)  um=O on D(_w(m)), with um(z)=(H~f)(z)  for 
z~Um=lOBi(w(m)) .  We subtract from Urn(Z) the null term obtained 
integrating over ~3 the left-hand side of (1.1) multiplied by f We get 

Um(Z ) = [(OZf)(z)-  (G~f)(w,)] + ~ qJ[O;'(W i, z ) -  G~(wj, wz)] 
j=l  
j v ~ i  

i m 
- q) . -~[1-e  -'/~/4=m~] for zESB~(_w ('~ (2.1) 

where we wrote the explicit value of GX(w~, z) on 8Bi(w (m)) in the last term. 
By the assumptions A1 and A2 the first two terms in (2.1) are bounded 

by 

M i m ( f ) = C [ s u p  ]VG'f](y)+ ~ ]q~] 1 ] 
m Ly~3 j=l " I w , - w j l  2 

and the last one by C Iq)l. 
The function 

e x / ~  (~/4rcm) i ). , =-- (Mm(f)+ Iq~]) G (v~,, y) 
fl~(y) m i l " 

is a solution of ( - A  + 2) (Im(y) ----- 0 o n  D(_w (m)) such that him(Z) ~.~ M~m + [q~] 
for z ~  OOi(w(m)), for each i. 

By the maximum principle C~,,,(y) is then an upper bound for u~(y) 
on D(_w (m)) and for any g ~ C~(D(_w (m)) we have 

I(g, (H~-G~)f)[ < C  sup ]VG~f[ (y)sup G ~ Igl (wi)+ C 
, my~3 i -~ [qf[ OG~g! 

where O is the matrix O U = I W i -  Nil 2 if i r j and Qii = m, 
Iqll = {Iq)[,..., [q~'] }. Applying the Schwartz inequality and making use of 
(1.6): 

C 
I(g, ( H ~ -  6 ~ ) f ) [  ~<-- sup IVG~f l  (y)sup  G~lgl (wi) 

m yER3  i 

C 
+ ~-~ Iit Iqsl Ill (m) IIIQIII (~> III G~gl Itl r 

c 
<m2 IIG~fllcl [ m +  IlIOll]~m)3 sup G~lgl (w,) (2.2) 

i 

where ItG~fllc ~ = s u p y ~ 3  [tVG)fl (y) + IG~ft (y)].  
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Notice that for any 0 < a < 3/2 

e-,,/~lwi- zi 
G'~lgl (w~) <~m" ~ 4 z j  iw_zl~_,~ Ig[ (z) dz 

for g e C~(D(w(m))), so that by the potential estimates: 

supGXlgl(wi)<<,Cm ̀ [[gll(q m) for 3>>,q>3-a i 
We have then 

( 7  
I(g, "~ "~ ~ ~pm) (H~- -Gm) f ) I  <~ _ Ilfll Ilgll~q m) [ m +  IIIQlll (m)] (2.3) 

for any p > 3 and q > -3 2 - ~ where we made use of the Sobolev inequality 
ilGaf[[cx <<. [[fll(pm) with p >  3. (15) 

By the definition of Q and the assumptions A1, A 2 we get 

( /.~ 1 )  1/2 
III Gill (m) ~< m + 

/,'=1 Iwi-wjl  4 

~m_.}_Cm(lv)(l_r = 1 )1/2 
,, l lWj-Wil 3-~ 
i~j  

<~ Cm(1 v)(1 ~)/2+ 1 (2.4) 

for any ~ > 0 and v < �89 Inserting the bound (2.4) in (2.3) we have 

[(g, (H~m__G~m)f)t <<C[[fH(pml []g[l(q,n) m 1+~+o' (2.5) 

for any p > 3, q > 3 _ ~ and o-' > �89 (2.5) and the symmetry of (H~ - G~) say 
that for any e > 0  there are q < 3  and q ' = ( 1 - 1 / q )  1>3  such that 
( H ~ - G ~ )  is a bounded operator from Lq(D(w(m))) to Lq(D(_w(m))) and 
from Lq,(D(w (m)) to Lq,(D(_w(m))) with norm less than Cm 2/3+,. Making 
use of the Riesz Thorin lemma we finally conclude the proof of the 
theorem. | 

Remark. Using the fact that G;Jg[ (wi) is uniformly bounded in (2.2) 
the use of the Hilbert-Schmidt norm for (the nondiagonal part of) Q can 
be avoided. It is then possible to get a rate of convergence m-~ with ~ < 1. 

Notice that (1.5) defines H~ as a bounded operator in all L2(N3). 
Moreover, it will be in L2(N 3) that we will show, in the next section, the 
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convergence of H,~ to the limit operator ( - A  + c~V+ 2)-~. From now on 
with H~ we will mean the operator (1.5) defined in all L2(R3). Its restric- 

)~m Hm Zm where tion to L2(D(_w(m))), we considered until now, will be then ; 
)~m(X; _W (m)) is the characteristic function of D(w(m~). An estimate of the dif- 
ference between the two operators is given in the following: 

Proposi t ion  1. For w(m)~ W (m) we have 

2 2 1/2 [[H m - ZmHmZml[2 <~ C m -  (2.6) 

Moreover for any f ~  L 2 ( ~ 3 ) ,  

lim Ilml/2(H;,~ ~ = 0 - Z m g m Z ~ ) f H 2  m~ oo 
(2.7) 

Proof. In fact, 

I IH~-  ~ 4 2  IIH~(1 zm)ll2 ZmHmZmll= 

and for any f, g belonging to C~X~(~ 3) 

I(f, H~(1 -Zm)  g)[ ~ Itlqflll Ira) ]IIG~'~-~)~Itl (m)+ IIa~fll ~ H(1 --)~m) gtl~ 

i= l  m 
(2.8) 

Dividing the contributions from the various obstacles we have 

[G~( 1 --Zm) gl (Wi)~ l-G~(1 -Z.~)lgJ](w~) 

= ~, (G~)~L [gl)(wi)+ (G;~2~m Igl)(wi) 
j = l  

where ~ is the characteristic function of Bj(_w(m)). For w (m) ~ W (m) we then 
get 

IG~(1-Xm) gl ( w i ) ~ C  E 1 Iwi-wj------~l F[Z~ ]g] 11~+ sup ( G ~  Igl)(Y) 
j= 1 y~Bi(w(m)) 
j~ i  

~ C ( m _ 3 / 2  ~ 1 -1 /2 )  ~i 
- II•mgll2 j= 1 I Wi WJ I k m suPi 

j r  
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where the Schwartz inequality was applied to the first term and a potential 
estimates to the second in the last step. We have therefore 

[GX(1--Zm) Igt]2(W~) 
i = 1  

C m -4  ~ [w i - wJ I iw i - wj, i 
i , j , j ' =  1 

j T~ i;j' r i 

+ m  3 _1 - l  
~,j Iwi wjl ~m supe It)~gllz 

i v~ j  

<~ Cm -1/= sup [12~ gN= (2.9) 
i 

where we made use of the assumption A 2 to bound the sums in 
parentheses. 

Being 112~ gll= ~ < UgH2 and limm_ ~ sup~ II)?~ gl[= ~<lim,~ .co 
I1(1 -Z,~) g112 = 0 by the dominated convergence theorem, (2.6) and (2.7) of 
the proposition follow. | 

3. CONVERGENCE A N D  FLUCTUATIONS 

In this section we want to investigate the asymptotic properties of H~ 
when m goes to infinity. 

As before, denote by V the operator of multiplication by V(x). 
From the definition of H~ we can see that the convergence of HXm to 

A ;~ - ( - A  + c~V+ 2) 1 = (c~GxV+ 1) i G; corresponds formally to the con- 
vergence of the sequence of m x m matrices [(eG2/m)(_w (m)) + ~ ]-1 on 
12(Rm) to the operator (eG2V+ 1) 1 on L2(23). Using the resolvent expan- 
sion this is equivalent to convergence of {(a/m)GX(w(m)) n} to (eGaV) ~. 
Notice that for any continuous function f and any y ~ R 3 the sequence 
(e/m) ~2m_1 GX(y, ws)f(wj) converges as m ~ oo to ct(G;Vf)(y), by the law 
of large numbers. We are then mainly left to prove that we have con- 
vergence of the nth power of the matrix eG;/m to the nth power of the 
operator eGaV. This would be an immediate consequence of the law of 
large numbers applied to [(c~/m) G;']" if it were true that 
E{(e/m) G~]"}<0% where E indicates expectation with respect to 
{ V(x)dx} | This is not the case for the presence in each matrix element 
{ [(a/m) G~]"}/s of factors G;~(wi, wk~)'"G2(wk,_l, wj) in which some point 
is repeated (one has for example the term (c,/m)"[a~(w,, ws)]"). The mean 
value of these terms is in general infinite. 
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We prove now a lemma that guarantees that the terms with repeated 
points are negligible for a set of configurations whose measure increases to 
1 when m goes to infinity. Associate to each term G3~(Wi, Wkl). 
G;(wk~, Wk2)'"G;'(Wk._2, Wk,,_~) G~(wk~ W j )  in [(G~)"]~ the corre- 
sponding path from i to j defined by the sequences (w~, wk~'"w~o_~, wj) 
and define the matrices: 

[(G~)"]o.= [(G~)Tv]~j + [(G~)7]u 

where [(G)7] is the sum of the terms corresponding to paths from i to j 
that intersect themselves at least once and [(G))]~j the ones in which no 
loops are present. Accordingly the matrices (G ~ + ~ )/-1 and (G ~ + ~ )u ~ are 
then defined and 

n~l(x, y ;  w ( m ) )  ~. - -  L G~(w(m)) G2(w(m)) + ~ G~(w(m)) 
m 

H~N(x , y; w (m)) = G'~(x, y) - ~  G~(_w (m)) G)(_w ('')) + "0 G~y(_w (";) 
N 

We want to prove now the following: 

Lemma 1. If 2 is taken large enough, for any ~ > 0 one can find an 
rh such that if m ~>rh then [Iml/2H~mzfll 2 <8 Ilfll2 for any w (m~ belonging to 
m ( m ) .  

ProoL From the definition of H )" ml 

@s+l 

I(g, ml/2H~J)l <~ ~ mS+ 1/2 IG~(G")} a ) l  (3.1) 
S~2 

) Z s " Let us consider the sth term Gg(G )t G~ and compute the total con- 
tribution due to terms relative to paths which have the first repeated point 
after s 1 steps, O<~sl<~s-2, and a loop of s2 steps, 2<~Sz<<.(S-Sl) 

Explicitly, 

A~s2(g' f )  =- mS+ 1/2 
i,p,k,l,q,r,j~ 1 

[G~]Z(G~)~ - '],~[G~]~k[G~]kt 

x [G~)'~-2],q[G'~]qkEG;']krE(G;gS-S'-~-l],~y[G~.] j (3.2) 
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(For sake of notational simplicity we are not considering the case sl = 0 
which can be nevertheless treated in exactly the same way.) 

A,~.s2(g, f )  <~ C~ "+1 (G;~g)2(wi) Gx 
m i l  

[ 1  11/2 { k.~r= 2 2 2 2 )1/2 x ~ (GAf)2(wfl] m -(s2+3/e) [G ],~[G ]kr 
j = l  p,,  1 

k= l  l, =1 

m 7/2 ~ 2 2 .L 2 < Ce~+l HfH 2 Hgll2 [G ],k[a ]k~ 
p.k,r 

(3.3) 

where again we used sup IG~gt ~ C Ilgll2. 
In the last multiple sum we consider separately the contributions 

corresponding to p = r and to p :~ r: 

1"](w(m))~m--7/2 2 [G2(Wp ' Wk)]2[G2(Wk' Wr)]2-~ 2 [G)'(Wp ' Wk)]4 
p,k,r 
pr 
p v~r 
kr 

( ' , <<'m-1/2 m-3 ~' ]wp -wk] 2]wk -w~] 2 
p,k,r 
pv~k 
p~r 

\ k~r 

p.k 
pr 

,) +m 3 ~, IWp--Wkl 4 
k,p 

kr 

By (2.4) and by explicit computation of the mean value of the first 
sum we immediately get that the term in parantheses is finite almost 
everywhere in W (m) so that timm~ ~ rl(w (m)) = 0 for almost any sequence 
_W (m), _W (m) ~: W (m). 

Using (1.3): 

A~s2(g, f )  <. Hfll2 Hgl]2 (C~2 flj2)s--4 ?](_w(m)) 

Being the estimate independent of st and s2 we have only to count the 
possible positions and lengths of the loop. They are ~ 2 =  z (s - s 2 -  1) ~< s 2 
so that we finally get 

I(g, ml/2H~m,f)l <~C ]lfll= Ilgtlz ~/(- w(')) ~ (C1~-13/2) sS2 (3.4) 
s=2 

which converges to 0 as m goes to infinity if 2 is large enough to make the 
series on the right-hand side of (3.4) converge. | 
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By Lemma 1 we can substitute H~ by H~u if we want to establish con- 
vergence in probability. Moreover, H~(x ,  y; w ~m)) is a random variable in 
(~3),~ which is invariant under permutations of the wi's and has finite first 
and second moment. A law of large number and a central limit theorem 
should then hold for it. 

Proof of Theorem 1. We first prove part (a). Let the random 
variable ;- ' W  ( m ) )  ~g(f, be defined as in the statement of Theorem 1 in the 
introduction. The result we have established so far can be restated as 
follows: almost everywhere in W (m) one has 

lim ~ . _w(m)) ~. (m) ~g(f, = lim mX/2(f, g HmN(-W ) -- A~g) 
m ~ oo m ~ oo 

= lim ~ (-~)S{m-~'+X/2G#(_w(m))EG~'(_w(m')]%-' 
r n ~  s - - 1  

x G~(_w (m)) - rnl/2(f, G;~(VG;~) ~ g)} (3.5) 

[Notice that we are allowed to truncate the sum at the mth term by the 
lemma and by the norm convergence of the Neumann series for 
( _ d A i _  ~ _ ~ o ~ V )  1 . ]  

Denote by O~g(f; w (m~) the random variable given by the sum on the 
right-hand side of (3.5). Then l i m m ~  ;" " E(Og(f, L~(m)))=0 and for any 
f , f '  E L2(~ 3) we can compute explicitly: 

E(O~g(f) O~(f')) 

S,S' = 1 

[m 
{(_~)s+s, EEm ~-s'+ IG~(G;.)~ GjG~,(G)~ ~Gg] 

m!m -s+l m!m-S'+l 1 1 
+ (m--s)! (m--s')! J (f' G~(VG~)S g)( f"  G~(VG~)S' g) 

(3.6) 

Again we will distinguish the cases: (1) pairs of paths of (G;')% ~ and 
(G;)% i which have no intersections; (2) pairs of paths that intersect once; 
(3) pairs of paths which have more than one intersection. 

Considering only paths of type (1), (3.6) becomes 

m!m s+l m!m-S'+l m!m ~' ~'+11 
(_a)s+s' rn (m-- s)! (m-- s')! + -~ ------s------~i J 

s , s '  ~ 1 

x (f, G~(VG~)" g)(f ' ,  G;(VG;~) s' g) (3.7) 

where [ ( m - s - s ' ) ! ]  1 is intended to be 0 for s+ s ' > m.  

822/'41/'3-4-9 
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Let ~(m, s, s') denote the combinatorial term in (3.7). One easily 
verifies that I~(m, s, s') + ss'l <~ C(s4s'4/m), so that 

+0(1) Z (oOs+S's4s'4[(f,G;t(VG'~)Sg)] ](f',G;~(rG).)S'g), 
s , s '  = 1 

(3.8) 

where the last series converges uniformly in Itfll2= Ilf'H2= 1 for 2 suf- 
ficiently large. 

The contribution of terms of type (2) is 

m ! m - S  s'+i (_~y+s, 
A. s,,'=l ( m - s - s ' +  1)! 

x ~ E [G2(VG~)"f](w,)[G)'(VGX) "-~ l g](wi) 
n = O  p ~ 0  i 1 

x [G'~(VG'~)ef'](wi)[G'~(VG:~) ' ' - , - I  g](wi)} 

= ~2 ({G~ Inm_~ I (-cO"(VG'~')nf]}{G'~[pm~=2 (-oOP(VG;~)Pg]}  

• ~-1 ,-o~,P'(VG2)P'gJ})L +0(1 ) (3.9) 
L p ' = O  

where (. , .)L~ = ( ' ,  V' ). 
In the same way one verifies that the contribution of terms of type (3) 

is of order m 1. 
Adding (3.8) to (3.9) and taking into account that 

, = 1 ( -- ~)" sGx( VG)~)s = G%t VG ~ (1 + ~ VG'~) 2 
= ~GX(1 + ~VG)') -1 VG~.(1 + eVGX) -1 = eA).VA ~ 

we get 

(3.10) 

lim E[O~g(f) Og(f ')]  = rih.s, of (1.9). 
m ~ o o  
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Notice that this result implies in particular that 

rn~ IIH2N (-W(m))- A2{t2 mace' 0 

in probability for any 7 < 1/2 and 2 sufficiently large. This result together 
with Theorem 2, (2.6) and Lemma 1 concludes the proof of the norm 
resolvent convergence to the limit operator A ~- stated in the theorem. 

The nature of the cancellations in the computation of 
E[O~(f)  O~g(f')] suggests that the random field O has, in the limit, the 
same covariance matrix of the random field: 

(~g(f; _w (m)) - m ,/2 ~ K~g(f; w~) - m l /2E [Kw wj)] 
i = I  

(3.11) 

where 

K~g(f;wi)= (-cO s ~ [G;'(VGX)"f](w~)[G~(VG ~') . . . . .  l g ] ( w i  ) 
s = l  n = O  

and [see (3.10)] 

E[ K~g(f ; wy)] = c~(A;~ Axg)L~ 

Notice that the sequence -~- �9 {~g(f, w(m))} converges to a Gaussian random 
variable since its elements are normalized sum of independent identically 
distributed random variables. Moreover, 

E [ ( J ( f )  ~-~(f')] = E[Kj ( f )  Kg(f ' ) ]  - E[K~g(f)] E[KJ(f ' )]  

where the first term is identical with (3.9) up to a term of order m 1. 
To conclude the proof of part (b) it is then enough to show that 

E{ a -4 2 l O g ( f ) - ~ g ( f ) ]  } converges to 0 when m goes to infinity. Since the 
variances have the same limit, this amounts to prove that 

E{[~g(f,w(m~)] 2} (3.12) lim E[o~(U; w (m)) -~" �9 2imo~ -~ �9 ,~ ~ o~ ~g(f ' -w(m))] = 

By a straightforward computation entirely identical to the one made before 
for E[O~(f)  Og~(f')] one shows that (3.12) holds. This concludes the proof 
of part (b). 

To prove part (c) of the theorem, let us consider now the case when s 
is such that A-1 is compact. In particular s could be a bounded region 
with smooth boundaries. The function V(x) has obviously support con- 
tained in f2. As we mentioned before the results we have proved so far for 



480 Figari, Orlandi, and Teta 

the case g? = N3 are still valid with slight modifications of the proofs, since 
they depend only on a bound on the (singular) behavior of Gx(x, y) when 
I x - y l  ~ 0 .  

With our assumptions on V and on ~,  G~ and A; are compact 
operators for any 2 >~ 0 and the following properties of their spectrum are 
well known: 

( i )  - z ~  m and - A  have only discrete spectrum in ~+. Each eigen- 
value has finite multiplicity. 

Denote by y(~m)(_w(m)) the nth eigenvalue (repeated according to the 
multiplicity) of --Am and by 7n the nth eigenvalue of - A  +~V. Let Pn be 
the orthogonal projection onto the eigenspace relative to 7~. 

(ii) The norm convergence of ( - - A m + 2 )  -1 to ( - A + c ~ V + 2 )  1 
implies in particular that for (almost all) sequences {_w(m)}, _w(m)e W (m), 
Y (m)[W(rn)] ~ Yn" Moreover i f /~  is the multiplicity of 7,, one can find a 

n ~ -  / m ~ o o  

neighborhood ~n of 7, such that, for m sufficiently large, ~ ,  contains r ~</~," 
eigenvalues of - A , ,  of total multiplicity equal to #,.  The projection on the 
direct sum of their eigenspaces converges in norm to Pn as m goes to 
infinity, for almost all sequences {_w("~}, w(m)~ W (m). 

We will consider here only the case when 7~ has multiplicity 1; the case 
when 7~ has multiplicity greater than 1 is not a straightforward extension of 
the one we will consider. 

Let ~0~ be the (real) normalized eigenfunction corresponding to 7, and 
qr the ones corresponding to 7~'~)(_w(m)). One has 

1 
(~0~, ~, ~ - - -  ( ~ . ,  ~0~"~) (3 .13)  

and 

1 
(q)n, A;q)~ m)) =7--~-2 (q)n, ~o(~ m)) (3.14) 

Subtracting (3.14) from (3.13), 

(7 .  - ~m~)(~0.,  q,~"~) = ( ' : .  + ~)(~,~2~ + ~)(~o~ ( a ~ z ~  - A :~) qr 

By the norm convergence, I(~0,, @,m))[ > 0  for m sufficiently large; we 
have then 

H~,~) =_ m,/2(7, _ 7(m)) __ (7, + 2)(7~ ") + 2) 
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On every W (m) ~ W (m) the random variable ~; r differs from ;" 
by a term which tends to 0 when rn -+ oo. 

Since (Yn + )o)(y(m) + 2)/(q)., qCml) ~ (Tn + 2) 2, the convergence in 
distribution of the field ~g(f) implies then the convergence in distribution 
of the random variables H~ "t to the Gaussian random variable H .  of mean 
0 and variance: 

E( /72 )  = ~21-(q02, V~  2) - (~0,,, V(,o,,) 2 ] II 

4. E X T E N S I O N S  A N D  A P P L I C A T I O N S  

We want to discuss briefly in this section some simple extensions of 
the results stated in Theorem 1. In particular (A) the two-dimensional case, 
(B) the case in which B is not a sphere, and (C) release of some assumption 
on V. 

(A) Owing to the logarithmic singularity of the Green's function in 
the two-dimensional case the limit of constant capacity is the one in which 
the radius of the disk is taken to be e -m/2~. If this is the case, the 
definition (1.1) of the "charges" qx turns out to be exactly the same. The 
only further feature of the proof of Theorem 1 was the possibility to find a 
set W (m) of measure going to 1 in the limit m--, oe such that (i) for any 
configuration of W (m) no two spheres intersect; (ii) the Hilbert-Schmidt 
norm of the matrix G~(Iy (m)) is finite for _w (m/e W (ml. 

In the two-dimensional case it is then enough to require 

A'I: m i n l w i - w s I > m  p for some p > 0  
i , j  

A~: rn-- 5 log 2 pwi-wfl  < C < o e  
i , j  = 1 
icj  

One checks immediately that for any continuous distribution V(x), A'I and 
A; hold in a set of measure increasing rapidly to 1 as rn goes to infinity. 

The proof given in Section 3 can then be repeated without change. 
It should be noticed that what prevents the extension of the proof to 

dimensions greater than 3 is the requirement that the Hilbert-Schmidt 
norm of matrices G~m(W (m)) be uniformly bounded. 

(B) As in the Introduction let B now a simply connected open 
neighborhood of the origin with C 2 boundary. Along the line of Lemma 1 
in Ref. 10 we want to prove the following: 

Theorem 2bis). (a) For  any sequences {_w(m)}, _w(m)~ m (m), 

lim m ~ [[G2m(_W (m)) -- H2m(_w(m))ll(2m)=0 
m ~ o o  
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for any/~ < 1/2. Moreover, for any g, f belonging to H1((2) 

mm(g, [G~m(- w(")) --O2m(-W(m))] f)<~ C(- w(m)) Ilgll~ [Ifl] H' 

where limm~ ~ C(_w (m)) = 0. Here n I is the standard Sobolev space (form 
domain of - A ) ,  and II'IIH~ denotes the corresponding norm. 

(b) For each geH l, the random field ~ ( f ;  _w (m)) defined as in (1.8) 
for f ~  H 1 converges in distribution to the Gaussian random field ~ ( f )  of 
mean zero and covariance given by (1.9). 

(c) The statement (c) in Theorem 1 holds also in the present case. 

ProoL We notice that all the proofs of Section 2 are algebraic and 
do not refer to a special shape of the obstacles. Only in the proof of 
Theorem 2 [formula (2.1)] did we make explicit use of the value of 
G~(w~, y) for y on 3B~(_w(m)). Therefore (b) and (c) of Theorem 2bis are 
proved if we prove (a). For part (c) remark that if q), is the eigenvector of 
- A  + eV associated to an eigenvalue 7~ of multiplicity 1, and if V~> 0, then 
q~, e H ~. We prove now part (a) of Theorem 2bis. 

Consider first the function vlm)(y; 2) which satisfies 

[ ( - A + ) ~ ) v l m ) ] ( y ; ] 4 ) = O ,  y ~ 3 \ B i ( _ w ( m )  ) 

m 
Vlm)(Z; }c) = -- ,  Z C 63Bi(_w (m)) 

lim v}m)(y; 2) = 0 (4.1) 

We have vlm)(y; ~,)= (m/a)f(m(y- wi); 2/m2), where ~(y, #) satisfies 

[(-~ +~) f](y, ~)=0, y~3\B 

~5(z, #) = 1, z E OB 

lira g(y; p) = 0 
lYl ~ 

Green's second identity gives us [see the notation introduced in (1.1)]: 

m 2 m ~15 2 -~ v (my, -~) =-~ faB Ga/m2(my, z) (-~)(z;-~5) dS(z) 

m B ( ~ )  (mY' z) dS(z) 
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L k--gfi-] (my, z) - e .fl~lyl \ c]h J (my, z)]  dS(z) 

o~ z ~ 3~ 2 

+ G~(y,O) 2 ]el 2 x; dx 
m 2 3\~ ~-5 

+ ~mc~ B Gx y' [y-z/m[ 

1 (e -./51y :/ml __ e-./~l.vl) - -~  ~y, dS(z) (4.2) 
mo~ B 

where we used repeatedly the Green's identities, the definition of capacity, 
and the fact that ~ e  (r176 z)dS(z)=O for y e  N3kB. 

From (4.2) we get immediately the following results: (i) for any y :~ 0 

(4.3) 

(ii) for any ga C~(D(w(m))) 

f lm~(my;--~)-G;~(O,  y)] g(y)dy <~C ]lG~gl]o (4.4) 

and (iii) 

(4.5) 

The last two results allow us to conclude the proof of Theorem 2bis) 
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along the line of Theorem 2. In fact, for any f e  C~(D(w(m~)), one has 
[compare (2.1)] 

[(H~m - G~) f(z)] =-- Um(Z) = [(G~f)(z)- (G~f)(w~)] 

+ ~, q)[G~(wj, z ) -  G;'(wj, wi)] 
j =  1 
. j r  

(4.6) 
h c~3 

Let us consider the function 

u~)(y) =- ~ [GX(w~, y) - v}m'(y; 2)] qS 
i = l  

with the v}m)'s defined by (4.1). On OBg(_w (m)) 

u~)(z)=qii[G~(wi, z ) - ~ ] +  ~ [G~(wj, z) 
j = l  
j ~ i  

- v)m)(z; 2)] q~, z e aB,(_w ~/)  

But we have 

( 1_ 
[GX(wj, z)__v}m)(z;2)] ]q)[ <<C ~ [q)[ ]wj w,] 

j = l  m j = l  
j ~ i  j ~ i  

which in the limit is smaller than the second term in (4.6). 
We are then allowed to write 

~ iwj_lwil2) 

[(H~- G~L) f[ (y)<<. C(u~'(y)+ u~l(y)+ (3~ lure (Y)I) 

where u~)(y), i=1,2 are both solutions of [ ( -A+2)u( f ] (y )=O on 
D(_w(m)), with boundary values on c~Bi(_w(m/): 

u~(z) = s u p  I(G;f)(z)- (G~f)(wi)l 
z E OBi(w (m)) 

u~(z)= !@1 Iwe wjl 2' 
j = l  
j ~ i  

z ~ OBi(_w (m)) 

Finally by (2.2), (2.4) of Theorem 2 and by (4.5), 

m 1/2 [(g, (H~-  G~)f)l <<. C [IG~/ll c , IlG;g[Ic, m -1/2+~' 
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In particular f, g e H  1 implies f,  g~ L 6 so  that G;f, GXg~ m 2"6, which is 
embedded in C 1 (see, e.g., Ref. 15). 

On the other hand, if in Theorem 2 we do not make use of the sym- 
metry we still obtain the result with a rate of convergence less then 1/2 
corresponding to the maximal degree of H61der continuity of G~f for f E L 2. 
For the same reason a rate of convergence less than 1/2 is obtained by (4.5) 
concluding the proof of Theorem 2bis). | 

(C) We would like now to make some remarks concerning the 
regularity conditions on V(x). The assumptions on V are only requested to 
guarantee the validity of AI and A: on a set of configurations of measure 
increasing to 1 when m goes to infinity. It is easily verified that the law of 
large numbers guarantees the validity of A2 even for more general dis- 
tribution functions V (for example V~L~c~L2). Unfortunately, the 
requirement that the obstacles have empty intersection is not fulfilled if V is 
too singular. In particular V must belong t o  Lp, p > 3, if one wants to avoid 
the possibility of "strong packing" of the obstacles. 

It is to be noticed that this difficulty concerns the method we used and 
we do not exclude that the result could be true as well for any Ve L~ c~ L 2. 

The image-charges technique we describe in this paper tends in fact to lose 
its effectiveness when the obstacles are not well distinct (with large 
probability). 

We want finally to make a comment about the relation between our 
discussion of randomly placed small scatterers and some recent work on 
point interactions (see, e.g., Ref. 16 and references therein). The latter work 
concerns attractive 6 potentials, used in particular for the study of the low- 
energy behavior of quantum mechanical scattering quantities. The necessity 
of the attractiveness is due to the fact that discrete sets of points are con- 
sidered and a perturbation of the Laplacian in ~3 with support in a dis- 
crete set of points is known to be nontrivial only in the attractive case. On 
the other hand, by the method described above it is possible to construct a 
(large) finite number of hard core potentials by starting, as a zero 
approximation, from an infinite number of scatterers and expanding then 
in the inverse powers of the number of scatterers. 

We conclude with some short discussion about possible further 
applications of the above results. 

In Refs. 2 and 7-9 was already pointed out the possibility to use the 
convergence result in problems of quantum or light scattering by randomly 
placed hard cores (low-energy scattering by glasses or scattering of 
neutrons by disordered cristals could be examples). A problem of multiple 
scattering is firstly reduced to scattering by an effective potential. The fluc- 
tuations give then a first-order term in an expansion around the m = oo 
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limit. Both terms contain as a physical parameter the linear size per unit 
volume of the scatterers. In spite of the conceptual simplicity of this 
approximation scheme, to our knowledge concrete applications have not 
been worked out. 

We plan to come back to this problem in further work. 
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